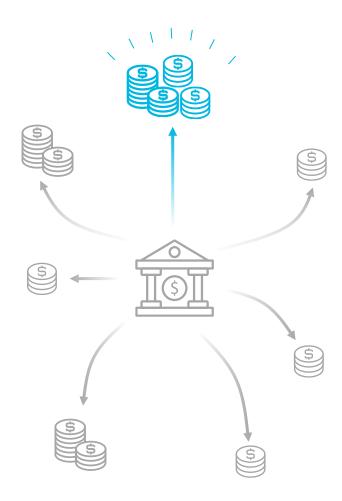


METODOLOGÍA DE CÁLCULO

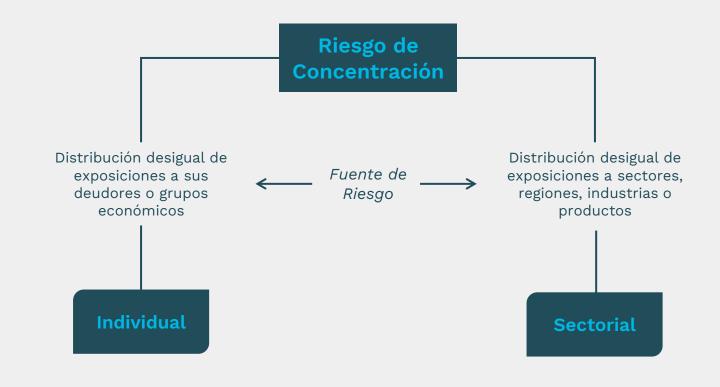
MODELO PARA LA CUANTIFICACIÓN DEL RIESGO DE CONCENTRACIÓN DE CRÉDITO

RIESGO DE CONCENTRACIÓN



Cualquier exposición individual o grupo de exposiciones con el potencial de producir pérdidas lo suficientemente grandes para amenazar la estabilidad del banco o su habilidad para mantener sus operaciones fundamentales

BCBS, 2006



SUPUESTO MODELO DE MERTON-VASICEK

Merton (1974)

$$R_i = \sqrt{\rho} Y_i + \sqrt{1 - \rho} \varepsilon_i$$

Expresión para obtener la probabilidad de incumplimiento de cada individuo i. Donde es el riesgo sistémico $Y \sim N(0,1)$, el cuál es único para todos los deudores $\epsilon \sim N(0,1)$

Vasicek (2002)

$$\mathbb{P}(D_i|Y=y) = \phi\left(\frac{\phi^{-1}(p_i) - \sqrt{\rho_i}y}{\sqrt{1-\rho_i}}\right)$$

Ecuación que permite encontrar la probabilidad condicional de incumplimiento para cada contraparte expuesta.

$$F_{p,\rho}^{-1}(\mathbb{P}) = \phi \left(\frac{\phi^{-1}(p_i) + \sqrt{\rho_i}\phi^{-1}(0.999)}{\sqrt{1 - \rho_i}} \right)$$

Con la ecuación anterior, es posible encontrar la función cuantil para estimar capital.

Gordy (2002)

$$L = \sum_{i=1}^N \omega_i \cdot PDI_i \cdot Z_i \quad \text{Donde} \quad \omega_i = \frac{E_i}{\sum_{i=1}^N E_i}$$

Haciendo uso del modelo ASFRfuncional simple para $q_{\alpha}(L)$ permite encontrar una forma

$$\mathbb{E}(L|Y = q_{\alpha}(y)) = \phi\left(\frac{\phi^{-1}(p_i) + \sqrt{\rho_i}\phi^{-1}(0.999)}{\sqrt{1 - \rho_i}}\right)$$

Gordy demuestra que:

$$|q_{\alpha}(L) - \mathbb{E}(L \mid Y = q_{\alpha}(Y))| \xrightarrow{N \to \infty} 0$$

Supuestos clave

Se asume que la cartera es infinitamente granular. Cada exposición refleja una fracción muy pequeña de la cartera

El riesgo sistémico es común y único para toda la cartera, y, por lo tanto, es el que determina las pérdidas en la cartera

METODOLOGÍAS RIESGO DE CONCENTRACIÓN

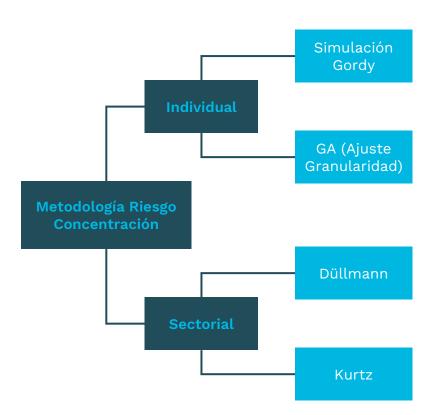
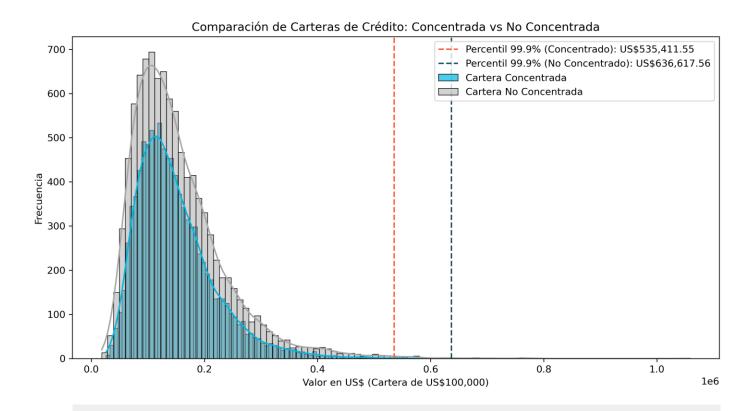


Gráfico Ilustrativo



Existen diferencias en las distribuciones. Cuando existe concentración, se subestima el riesgo de crédito en la cartera

RIESGO CONCENTRACIÓN INDIVIDUAL

∧RMM∧

Simulación (Gordy)

1. Genero N simulaciones con la expresión de Merton, generando dos vectores aleatorios que distribuyen $N \sim (0,1)$

$$R_i = \rho Y_i + \sqrt{1 - \rho^2} \varepsilon_i$$

2. Evalúo el resultado de R_i con la probabilidad de incumplimiento de cada deudor. Si el valor es menor o igual, entonces es 1, en caso contrario es 0.

$$Z_{i} = \begin{cases} 1 & R_{i} \leq \Phi^{-1}(p_{i}) \\ 0 & R_{i} > \Phi^{-1}(p_{i}) \end{cases}$$

El resultado de cada iteración lo multiplico tanto con la LGD como con el peso relativo de la exposición. La suma de todas las N iteraciones generan la distribución de pérdida, donde se estima el percentil 99,9%

$$L = \sum_{i=1}^{N} \omega_i \cdot LGD_i \cdot Z_i \qquad q_{\alpha}(L) = \min\{x \mid F_L(x) > \alpha\}$$

4. Se estima el requerimiento de capital mínimo; diferencia entre el percentil 99,9% y la pérdida esperada de la cartera.

$$RCM_{SIM} = q_{\alpha}(L) - \sum_{i=1}^{N} LGD_i p_i w_i$$

GA (Ajuste por Granularidad)

Método directo que calcula el requerimiento de capital mínimo a través de la siguiente ecuación:

$$GA = \frac{1}{2K^*} \sum_{i=1}^{N} \omega_i^2 \left[\left(\delta C_i (K_i + R_i) + \delta (K_i + R_i)^2 \cdot \frac{\mathbb{V}(LGD_i)}{\mathbb{E}(LGD_i)^2} \right) - K_i \left(C_i + 2(K_i + R_i) \cdot \frac{\mathbb{V}(LGD_i)}{\mathbb{E}(LGD_i)^2} \right) \right]$$

 ω_i^2 Peso relativo de la exposición sobre el total de la cartera al cuadrado

 R_i Pérdida Esperada de la exposición i

 K_i Es el capital requerido según modelo de Vasicek (IRB)

 $\mathbb{V}(LGD_i)$ Es la varianza de la LGD. Se puede estimar también como:

$$\mathbb{V}(LGD_i) = \gamma \mathbb{E}(LGD_i) (1 - \mathbb{E}(LGD_i))$$
 Con $\gamma = 0.25$

$$C_i = \frac{\mathbb{V}(LGD_i) + \mathbb{E}(LGD_i)^2}{\mathbb{E}(LGD_i)}$$

$$K_i^* = \sum_{i=1}^N \omega_i K_i$$
 Capital regulatorio total requerido

RIESGO CONCENTRACIÓN SECTORIAL

ARMMA

Simulación (Düllmann)

1. Genero N simulaciones con la expresión de Merton, pero descomponiendo Y_i por descomposición de Cholesky y $\varepsilon \sim N(0,1)$

$$R_i = \rho Y_s + \sqrt{1 - \rho^2} \varepsilon_i \qquad Y_s = \sum_{k=1}^K \alpha_{sk} Z_k \quad \text{con} \quad \sum_{k=1}^K \alpha_{sk}^2 = 1$$

2. Evalúo el resultado de R_i con la probabilidad de incumplimiento de cada deudor. Si el valor es menor o igual, entonces es 1, en caso contrario es 0.

$$Z_{i} = \begin{cases} 1 & R_{i} \leq \Phi^{-1}(p_{i}) \\ 0 & R_{i} > \Phi^{-1}(p_{i}) \end{cases}$$

El resultado de cada iteración lo multiplico tanto con la LGD como con el peso relativo de la exposición. La suma de todas las N iteraciones generan la distribución de pérdida, donde se estima el percentil 99,9%

$$L = \sum_{i=1}^{N} \omega_i \cdot LGD_i \cdot Z_i \qquad q_{\alpha}(L) = \min\{x \mid F_L(x) > \alpha\}$$

4. Se estima el requerimiento de capital mínimo; diferencia entre el percentil 99,9% y la pérdida esperada de la cartera.

$$RCM_{\mathrm{SIM}} = q_{\alpha}(L) - \sum_{i=1}^{N} LGD_{i} p_{i} w_{i}$$

Simulación (Kurtz)

1. A través de un método analítico se puede generar el cálculo de capital económico por riesgo de concentración sectorial.

$$CCS_{\alpha}(s) := EC_{\alpha}(s) - EC_{\alpha}^{NC}(s)$$

2. Si descomponemos cada componente del capital económico por concentración sectorial tenemos que:

$$EC_{\alpha}(s) := \mathbb{E}\left[L(s) \mid L(P) = t_{\alpha}^{P}\right] - \mathbb{E}(L(s))$$

$$EC_{\alpha}(s)^{NC} := \mathbb{E}\left[L(s) \mid L(P \setminus s) = t_{\alpha}^{P \setminus s}\right] - \mathbb{E}(L(s))$$

Finalmente, el cálculo de concentración sectorial de la cartera se estima sumando los capitales económicos de cada sector individual menos el complemento de capital económico por sector no concentrado.

$$CCS_{\alpha}(P) = \mathbb{E}\left[L(P) \mid L(P) = t_{\alpha}^{P}\right] - \sum_{s} \mathbb{E}\left[L(s) \mid L(P \setminus s) = t_{\alpha}^{P \setminus s}\right]$$

CONSIDERACIONES

Metodología Individual

- Para el método de simulaciones existe un costo computacional elevado dado que se guiere conseguir un percentil estable en la cola de la distribución.
- Estimación de parámetros internos tanto de probabilidades de incumplimiento PD como pérdidas dado el incumplimiento LGD de la cartera.
- Estimación del factor de sensibilidad ρ_i para cada deudor a través del cálculo normativo de la RAN 21-06 o metodología interna: método de los momentos o máxima verosimilitud.

RAN 21-06

$$\rho_i = 0.12 \cdot \left(\frac{1 - e^{-50 \cdot PD}}{1 - e^{-50}}\right) + 0.24 \cdot \left(1 - \frac{1 - e^{-50 \cdot PD}}{1 - e^{-50}}\right) \qquad \qquad \rho_i = \frac{\mathbb{V}(PD_i)}{1 + \mathbb{V}(PD_i)}$$

Método de los Momentos

$$\rho_i = \frac{\mathbb{V}(PD_i)}{1 + \mathbb{V}(PD_i)}$$

Se recomienda utilizar la metodología de Ajuste por Granularidad (GA) va que genera el cálculo directo de cargo por concentración individual sin tanto costo computacional.

Metodología Sectorial

- Para el método de Düllmann existe un costo computacional elevado dado que se quiere conseguir un percentil estable en la cola de la distribución.
- La estimación de la matriz de correlación tanto para la metodología de Düllmann como de Kurtz es sensible al cálculo final. Se debe optar por la mejor opción y fundamentarla.
- Existencia de un trade off entre la metodología de Düllmann y Kurtz, donde se elige entre costo computacional de simulaciones versus estabilidad en el cálculo, pero con un cargo de capital más elevado.

Nicolás AdriazolaPartner & Co-Founder

Dikson PradenasPartner & Co-Founder

Víctor Quezada Financial Risk Manager

ARMMA | Advisory Services | Technology and Analytics Solutions

Acerca de ARMMA

ARMMA es una consultora en gestión de riesgos y soluciones tecnológicas. Nuestros servicios ayudan a impulsar el éxito sostenible de nuestros clientes en diversas industrias. Nos comprometemos a trabajar en equipo para cumplir con nuestras promesas hacia todos los interesados. A través de nuestro trabajo, desempeñamos un papel en la mejora de la estabilidad financiera y la promoción de la innovación para nuestros clientes, nuestro equipo y las comunidades que servimos. ARMMA CONSULTING LIMITADA opera como una firma de consultoría independiente, proporcionando servicios de asesoría y tecnología adaptados a las necesidades únicas de nuestros clientes. Para más información sobre nuestra organización, visita armma.cl.

©2024 ARMMA CONSULTING LIMITADA.

Todos los derechos reservados.

Alonso de Córdova 5870, Piso 5, Las Condes, Santiago, Chile.

Este material ha sido preparado con fines informativos generales y no debe ser considerado como asesoramiento profesional en gestión de riesgos o tecnología. Por favor, consulta a tus asesores para obtener recomendaciones específicas.

armma.cl

CONTÁCTANOS

Dikson Pradenas

Partner & Co-Founder ARMMA Consulting dpradenas@armma.cl +569 9748 7311

Nicolás Adriazola

Partner & Co-Founder ARMMA Consulting nadriazola@armma.cl +569 9310 6460

Victor Quezada

Financial Risk Manager ARMMA Consulting vquezada@armma.cl +569 4523 3037

METODOLOGÍA DE CÁLCULO

MODELO PARA LA CUANTIFICACIÓN DEL RIESGO DE CONCENTRACIÓN DE CRÉDITO